
Sessions and
Authentication
Sessions and authentication with Flask-Login

Juan Pablo Sáenz

218/12/23

Outline

• Sessions and cookies
• The need for authentication
• Authentication in Flask

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

318/12/23

SESSIONS AND COOKIES
Giving memory to HTTP

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

418/12/23

Sessions

• HTTP is stateless
– each request is independent and must be self-contained

• A web application may need to keep some information between
different interactions

• For example:
– in an on-line shop, we put a book in a shopping cart
– we do not want our book to disappear when we go to another page to buy

something else!
– we want our "state" to be remembered while we navigate through the website

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

518/12/23

Sessions

• A session is temporary and interactive data interchanged between two
or more parties (e.g., devices)

• It involves one or more messages in each direction
• Often, one of the parties keeps the state of the application
• It is established at a certain point it time and ended at some later point

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

618/12/23

Session-based Auth

• The user state is stored on the server
– in a storage or, for development only, in memory

Browser Server

POST /login

{ username,
password }

Response Cookie
{ sessionId }

GET /exams

Cookie
{ sessionId }

Response
{ exams: [...]

}

Save
session
data

Check sessionId (in cookie)
Retrieve stored session data

Execute SQL queries

if not successful:
401 Unauthorized

Session storage
{ sessionId : {

username,
userinfo,

temp_data, …} }

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

718/12/23

Session ID

• Basic mechanism to maintain session
• Upon authentication, the client receives from the server a session ID
• The session ID allows the server to recognize subsequent HTTP requests

as authenticated
• Such an information
– must be stored on the client side
– must be sent by the client at every request which is part of the session
– must not be sensitive!

• Typically stored in and sent as cookies

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

818/12/23

Cookie

• A small portion of information stored in the browser (in its cookie
storage)

• Automatically handled by browsers
• Automatically sent by the browser to servers when performing a request

to the same domain and path
– options are available to send them in other cases

• Keep in mind that sensitive information should NEVER be stored in a
cookie!

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

918/12/23

Cookie

• Some relevant attributes, typically set by the server:
– name, the name of the cookie [mandatory]

• Example: SessionID

– value, the value contained in the cookie [mandatory]
• Example: 94$KKDEC3343KCQ1!

– secure, if set, the cookie will be sent to the server over HTTPS, only
– httpOnly, if set, the cookie will be inaccessible to JavaScript code running in the

browser
– expiration date

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1018/12/23

THE NEED FOR AUTHENTICATION

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1118/12/23

Authentication vs. Authorization

Authentication

• Verify you are who you say you
are (identity)

• Typically done with credentials
– e.g., username, password

• Allows a personalized user
experience

Authorization

• Decide if you have permission to
access a resource

• Granted authorization rights
depends on the identity
– as established during

authentication

Often used in conjunction to protect access to a system

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1218/12/23

Authentication and Authorization

• Developing authentication and authorization mechanisms
– is complicated
– is time-consuming
– is prone to errors
– may require interacting with third-party systems (login with Google, Facebook, …)
– …

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1318/12/23

Authentication and Authorization

• Involve both client and server
– and requires to understand several new concepts

• Better if you rely upon
– best practices and “standardized” processes
– advice by security experts!

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1418/12/23

Layers of Authorization
Who What How When

User Login / Logout / Navigate
pages

Flask App Is the user logged?
Remember user information

Flask-Login Set at login
Destroyed at logout
Queried during navigation

Browser Remembers navigation session Session Cookie (stores session ID) Received at login, in HTTP Response
Re-sent to server at every HTTP Request

Server Remember session data Session storage (creates session
ID, remembers associated data:
username, group, level, …)

Created at login
Destroyed at logout
Retrieved at every HTTP Request

Route (HTTP API) Check authorization
Execute API

Verify session validity At every (non-public) HTTP Request

Route (Login) Perform authentication Check user/pass
If ok, create session information

At Login time

Route (Logout) Forget authentication Destroy session information At Logout request

Database (at Login) Validates user information Queries & password encryption At Login time

Database (HTTP API) Retrieves user information Queries from session information At every HTTP Request

1518/12/23

A Note About Security…

• Always use HTTPS and "secure" cookies (at least in production)
– use "httpOnly" cookies

• Never store sensitive information into cookies
• Rely on best practices and avoid to re-invent the wheel for auth
• Web applications can be exposed to several "basic" attacks
– CSRF (Cross-Site Request Forgery), a user is tricked by an attacker into submitting

a request that they did not intend
– XSS (Cross-Site Scripting), attackers inject malicious JS code into web pages
– Most of these can be prevented with a proper usage of frameworks, best

practices, and dedicated libraries

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1618/12/23

Base Login Flow

1. A user fills out a form in the client with a unique user identifier and a
password

2. Data is validated and, if ok, is sent to the server, with a POST API
3. The server receives the request and checks whether the user is already

registered, and the password matches
Password comparison exploits cryptographic hashes

4. If not, it sends back a response to the client
"Wrong username and/or password"

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1718/12/23

Base Login Flow

5. If username and password are correct, the server generates a session id
6. The server stores the session id (together with some user info retrieved

by the database) in its "server session storage"
7. The server replies to the login HTTP request by creating and sending a

cookie
8. The browser receives the response with the cookie

the cookie is automatically stored by the browser
the response is handled by the web application (e.g., to say "Welcome!")

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1818/12/23

AUTHENTICATION IN FLASK
Relying on Flask-Login

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

1918/12/23

Authentication with Flask-Login

• Flask-Login provides user session management for Flask
– Flask-Login, https://flask-login.readthedocs.io/en/latest/
– install with: pip install flask-login

• It handles the common tasks of logging in, logging out, and
remembering your users’ sessions over extended periods of time
– store the active user’s ID in the Flask Session, and let you easily log them in and

out
– restrict views to logged-in (or logged-out) users
– handle the normally-tricky "remember me" functionality

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

https://flask-login.readthedocs.io/en/latest/

2018/12/23

Flask-Login: Configuration

• Flask-Login works via a login manager
• It contains the code that lets your application and Flask-Login work

together
– how to load a user from an ID
– where to send users when they need to log in

• Once the actual application object has been created:
– login_manager.init_app(app)

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2118/12/23

Flask-Login: Configuration

• Flask-Login uses sessions for
authentication

• We must set the SECRET_KEY on
our application, otherwise Flask
will give us an error message

from flask import Flask
from flask_login import LoginManager

app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret'

login_manager = LoginManager()
login_manager.init_app(app)

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2218/12/23

Flask-Login: Requirements

We need to provide Flask-Login, at least, two things:
• A User model with a set of properties and methods implemented in it
– it represents what it means for the app to have a user
– we can decide which information we want to store per user
– the User model can be based on any database system

• A user_loader callback
– specify how to load a user from a Flask request and from its session

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2318/12/23

Flask-Login: User model

• Flask-Login requires a User model with the following properties:
– is_authenticated: should return True if the user is authenticated
– is_active: should return True if this is an active user.

In addition to being authenticated, they also have activated their account, not
been suspended, or any condition our application has for rejecting an account

– is_anonymous: should return True if this is an anonymous user
– get_id(): this method must return a str that uniquely identifies this user, and

can be used to load the user from the user_loader callback

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2418/12/23

Flask-Login: User model

• UserMixin provides default
implementation for the methods
that Flask-Login expects user
objects to have

• Therefore, we can inherit from
UserMixin

from flask_login import UserMixin

class User(UserMixin):
def __init__(self, id, name, surname,

email, password):
self.id = id
self.name = name
self.surname = surname
self.email = email
self.password = password

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2518/12/23

Flask-Login: user_loader

• We need to tell Flask-Login how
to load a user from a Flask
request and from its session

• To do this we need to define our
User model and a user_loader
callback

@login_manager.user_loader
def load_user(user_id):

db_user = dao.get_user_by_id(user_id)

user = User(id=db_user['id'],
name=db_user['nome'],
surname=db_user['cognome'],
email=db_user['email'],
password=db_user['password'])

return user

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2618/12/23

Flask-Login: login_user

• Logs a user in. We should pass
the actual user object to this
method
– returns True if the log in attempt

succeeds, and False if it fails

from flask_login import login_user

(…)

new = User(id=user['id'], name=user['nome'],
surname=user['cognome'],
email=user['email'],
password=user['password'])

login_user(new)

return redirect(url_for('profile'))

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2718/12/23

Flask-Login: login_required

• Views that require your users to
be logged in can be decorated
with the login_required
decorator

from flask_login import login_required

(…)

@app.route('/profilo')
@login_required
def profile():

return render_template('profile.html')

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2818/12/23

Flask-Login: logout_user()

• When the user is ready to log out
• Any cookies for the session will

be cleaned up

from flask_login import logout_user

(…)

@app.route("/logout")
@login_required
def logout():

logout_user()
return redirect(url_for('home'))

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

2918/12/23

Flask-Login: current_user

• We can access the logged-in user
with the current_user proxy,
which is available in every
template

from flask_login import current_user

(…)

{% if current_user.is_authenticated %}
Hi {{ current_user.name }}!

{% endif %}

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

3018/12/23

Storing Passwords in the Server

• Never store plain text passwords in the server (e.g., in the database)
• Always perform hashing of the password
– so that nobody can retrieve your password, knowing its hash
– as hashing is a one-way function

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

3118/12/23

Storing Passwords in the Server

• werkzeug.security is a
Python library that we can use
– e.g., password ->

d72c87d0f077c7766f2985dfab30e8
955c373a13a1e93d315203939f542
ff86e

• pip install werkzeug

from werkzeug.security import
generate_password_hash, check_password_hash

(…)

new_user = {
"name": name,
"surname": surname,
"email": email,
"password":

generate_password_hash(password,
method='sha256')

}

INTRODUZIONE ALLE APPLICAZIONI WEB - 2022/2023

3218/12/23

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

